LAURA WILDMAN, PE

Director, New England Regional Office Fisheries & Water Resource Engineer **Princeton Hydro**

> w: 860-652-8911 c: 860-989-7966 lwildman@princetonhydro.com

REMOVING BARRIERS

AND RESOLVING CONFLICT

THE CONFLICT

RESOLVING DIFFERENT PERSPECTIVES

Can be as easy as defining the terms

Dam removal? So you want to remove Hover Dam? Why?

That small dam in town is just rotting in place and is a safety hazard, we should remove it!

The Aspen Institute A New Option for a New Century (2000)

THE DECIDING FACTORS

to help prioritize successful restoration projects

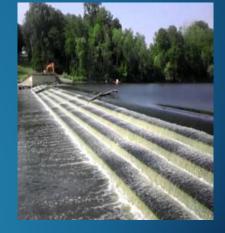
Typically Removed Due to:

- Dam Safety
- Liability
- Economic Issues (cost of maintenance)
- Environmental Concerns (i.e. connectivity/fish passage, water quality, restoration of natural fluvial functions)

Typically Retained Due to:

- Ownership
- Existing Uses
 - ✓ Water Supply
 - ✓ Hydroelectric
 - ✓ Flood Control
- Community Politics
- Aesthetics & Recreational
- Historic Issues

- Infrastructure
- Quantity of Sediment
- Quality of Sediment
- Scale of Project
- Funding Issues
- Sensitive Species & Conflicting Ecological Issues


SAFETY LIABILITY

Dam Retained

YORKVILLE DAM, IL (19 deaths but dam repaired)

Lake Solitude Dam, NJ (1 death, owner was denied right to remove dam)

SAFETY & LIABILITY

Dam Removed

Spoonville Dam, CT (multiple deaths, involved the white water boating community)

San Clemente Dam, CA (earthquake proofing cost too much)

Final Design: Tetra Tech & Interfluve

OWNERSHIP

Dam Retained

Plume & Atwood Dam, CT

OWNERSHIP

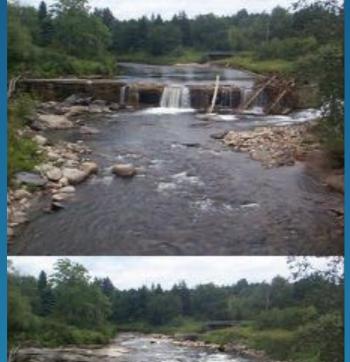
Dam Removed

Pizzini Dam, CT

(utilized photo renderings to convince an absentee owner)

Photo-rendering

DEVELOPING A COMMUNITY VISION


using photo renderings

Swanton Dam, VT

East Burke Dam, VT

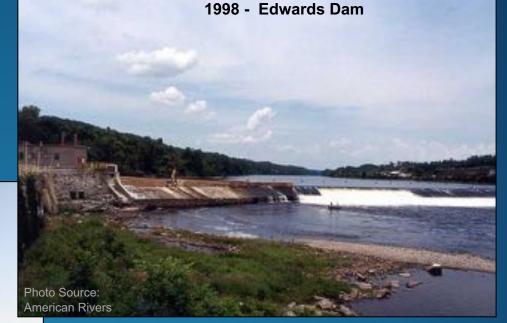
Holmes Playground Dam, MA

Rendering by Wildman

Rendering by Wildman

Dam Retained

Collinsville Dam, CT


(picturesque and have been investigating hydro potential for decades, with no real progress)

Dam Removed

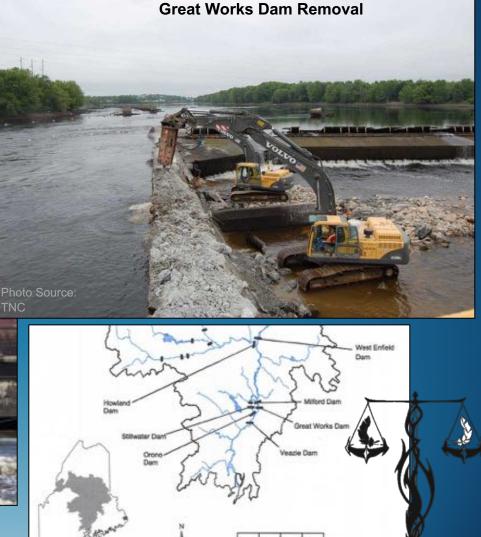
Edwards Dam, ME (record setting FERC relicensing – ecological benefits outweighed power benefits)

1999 – Edwards Dam removed

Final Design: EPRO

1997: Edwards Dam marked the <u>first time</u> <u>that FERC had ever denied an application for</u> <u>relicensing</u> and <u>set a precedent for FERC's</u> <u>authority to remove dams that pose greater</u> <u>harm than good</u>. One year after removal in 1999 alewife returned by the millions for the first time in 160 years.

Photo Source: American Rivers


Balanced Approach

Penobscot River, ME (Creative balancing of increased power generation and dam removals for ecological benefits)

Hydro Upgrades: Orono Dam from 2.78 to 6.52 MW & Stillwater Dam from 1.95 to 4.18 MW.

Bypass channel around Howland Dam

Klometer

Alternatives

Hydro Kinetic Turbines

In-Conduit Turbines

EXISTING USE – WATER SUPPLY

Dam Retained

Goldsboro Dam, NC

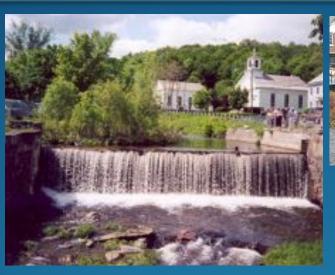
- 9 MGD
- Proposed: Modify internal wet well pipe configuration

Barrier #1 Little Lehigh, PA

- 30 MGD
- Proposed: Screened inchannel intakes with air scouring system

Green River Water Supply Dam, MA

- 2.1 MGD
- Proposed: Gravity feed, bypassing sand filters; pre-treat elsewhere


EXISTING USE – WATER SUPPLY

Dam Removed

Final Design: MMI

Ballou Dam, MA

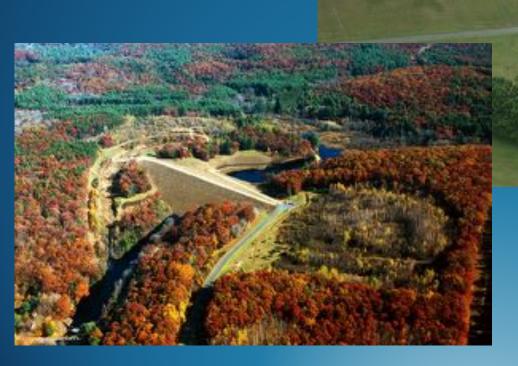
- 40,000 gal
- Proposed: Underground storage tank for fire suppression

Great Works , ME (alternate free flowing water intake)

- ~10 MGD
- Proposed: alternate free flowing water intake

EXISTING USE - FLOOD CONTROL

Dam Retained



Almost all flood control dams are retained

EXISTING USE - FLOOD CONTROL

Alternative with a Dam

But flood control dams could easily be designed to pass 100% of normal flows and smaller storm events, and designed only to attenuate significant flood flows

EXISTING USE - FLOOD CONTROL

Alternative without a Dam

Attenuation through final configuration (partial removal) or vegetation

Charles River, MA - The Giant Sponge

- 1983 acquisition & protection of 17 natural valley storage areas
- Totaling 8,103 acres
- USACE estimate of annual flood control benefits at \$17 million/yr

Source: CIFMCG Workshop 2006; Comprehensive Floodplain Management: Promoting Wise Uses of Floodplains & photos from the internet

COMMUNITY POLITICS

Dam Retained

Wiley Russell Dam, MA

Howland Dam, ME

COMMUNITY POLITICS

Dam Removed

Fort Halifax Dam, ME (economic justification)

West Winterport Dam, ME (extensive alternatives analysis, time & lawyers)

AESTHETICS & RECREATION

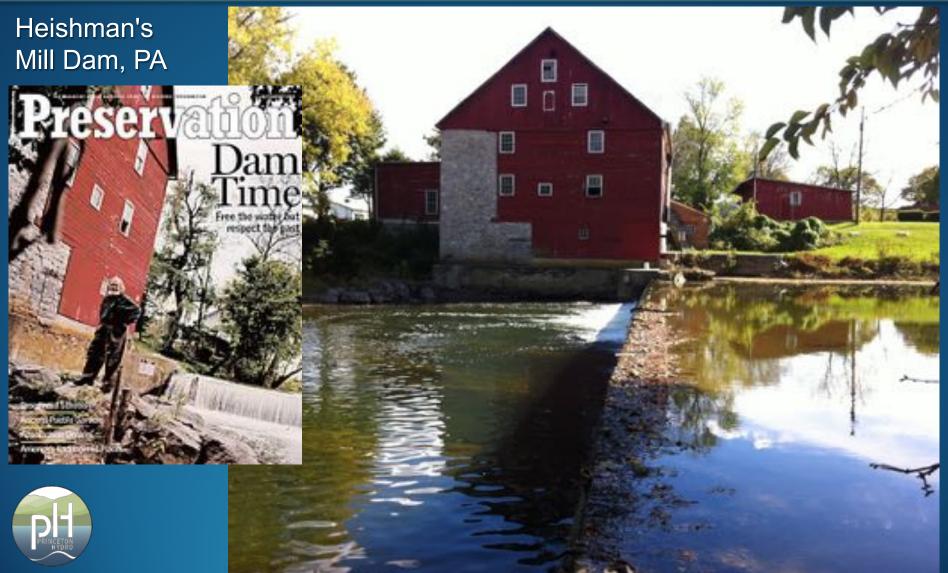
Dam Retained

Sennebec River, ME

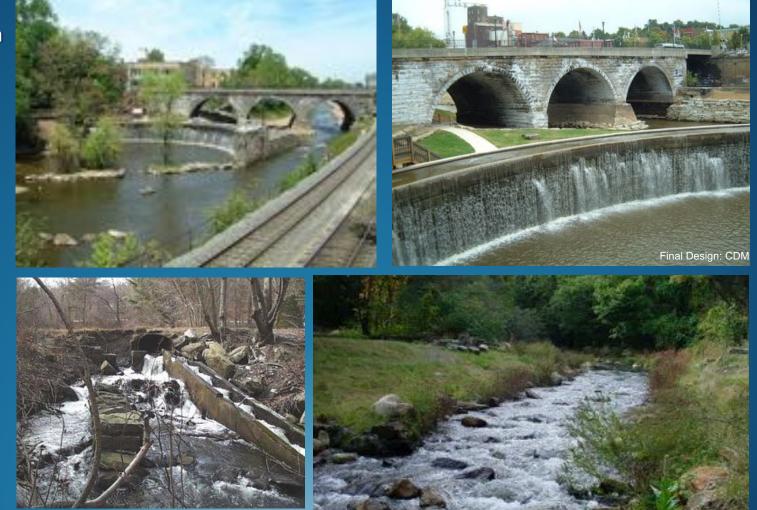
AESTHETICS & RECREATION

Dam Removed

Spoonville Dam, CT (worked with whitewater boaters)



HISTORIC VALUE


Dam Retained

HISTORIC VALUE

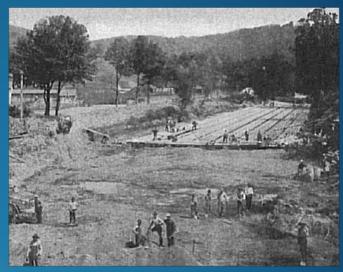
Dam Removed

Kent Dam, OH (kept portion of dam and created falling water aesthetic)

Town Brook Dam, MA (upfront study and documentation)

INFRASTRUCTURE

Dam Retained



The second second second

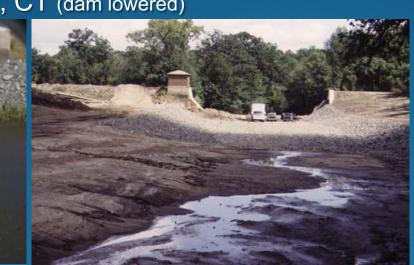
Brave Station Dam, PA

INFRASTRUCTURE

Dam Removed

Anaconda & Union City Dams, CT (protected sewer line with sheet pile and concrete cap)

Columbia Dam, PA (saw cut & stabilized rock riffle beneath bridge capable of passing fish)

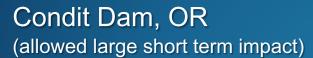

QUANTITY OF SEDIMENT


Dam Retained

Rindge Dam, CA

Mad River Dam, CT (dam lowered)

Platts Mill Dam, CT (partial width removal)



QUANTITY OF SEDIMENT

Dam Removed

Marmot Dam, OR (allowed large short term impact)

San Clemente Dam, CA (bypass & remove dam)

Final Design: Tetra Tech

Final Design: PacifiCorp

QUALITY OF SEDIMENT

Dam Retained

Cumberland Dam, MD (dioxins)

QUALITY OF SEDIMENT

Dam Removed

Milltown Dam, MO (significant sediment removal and confinement)

Final Design: River Design Group and Envirocon

Heminway Dam, CT (relocated and stabilize sediment on-site)

SCALE OF PROJECT

Dam Retained

Snake River Dams, Pacific NW

Klamath Dams, CA

(initially retained but heading toward removal now)

SCALE OF PROJECT

Dam Removed

Elwha Dam, WA (many years of planning and patience; took care of impacts 1st)

Glen Canyon Dam, WA (many years of planning and

patience; took care of impacts 1st)

Birch Run Dam, PA (dewatered 1st)

FUNDING OF PROJECT

Dam Retained

American Brass Co. Dam, CT

Middle Street Dam, CT (had Federal Highway Funding – then lost it)

FUNDING OF PROJECT

Dam Removed

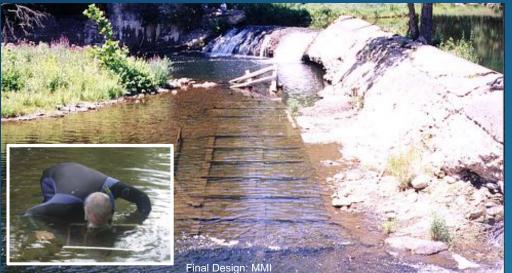
Naugatuck River Dams, CT (Special Environmental Projects Funding; i.e. mitigation)

SENSITIVE OR INVASIVE SPECIES

Dam Retained

Many of 1st Barriers on the Great Lake Tributaries, Midwest

Government Mill Dam # 6 E. Branch Housatonic River, MA (lowest Crane Paper Dam)

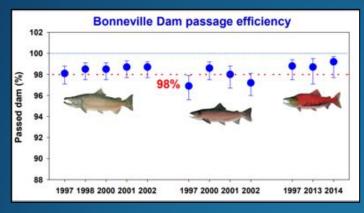


SENSITIVE OR INVASIVE SPECIES

Dam Removed

Carpenters Dam, CT (Wood Turtles – studied and developed construction protection plan)

Cuddebackville Dam, NY (Dwarf Wedge Mussels – locate & relocate)



EFFECTIVE FISH PASSAGE

Dam Retained

Bonneville Dam, WA / OR (few species, salmon centric, strong swimmers & jumpers)

INEFFECTIVE FISH PASSAGE

Dam Removed

Hyde Pond Dam, CT

Former impoundment

Former location of dam

yde Pond Dam

18

FISH PASSAGE EFFECTIVENESS

Bunt et al. 2011: Assessed 19 studies "The vast majority of fishway structures do not effectively mitigate the effects of barriers..."

Structure type	Total efficiency (%)
Pool-and-weir	43
Vertical-slot	44
Denil	62
Nature-like	43
Total	44

Brown et al. 2012: "It may be time to admit failure of fish passage and hatchery-based restoration programs and acknowledge that significant diadromous species restoration is not possible without dam removals."

Noonan et al. 2012: "Low overall efficiency of passage indicated that most facilities need to be improved to mitigate habitat fragmentation..."

FISH PASSAGE EFFECTIVENESS

What we think we are getting

What we are actually getting

CONFLICT RESOLUTION

The Balancing Act

Poor Condition No Longer Serves Purpose To Expensive to Maintain Liability & Safety Concerns Ecological Impacts - Public Trust Funding for Restoration No Long Term Costs

> Remove Dam

Good Condition Valuable Economic Purpose Historic & Recreational Value Has Effective Fishway Values Outweigh Impacts Owner/Community Wants Dam Have Funding for Maintenance

Retain Dam

WHAT ACTIONS CAN BE TAKEN

Prioritize limited ecological restoration resources and funding by:

1. Identify critical issues/potential barriers with stakeholder input early on

LOTS OF DATA AVAILABLE IF YOU DIG DEEP

- Past dam inspections
- FEMA Flood Insurance Studies
- Inundation Hazard Mapping
- Aerial or ortho photographs
- USGS mapping, gauge data for flow & sediment
- Geological mapping
- EPA watershed mapping & info
- GIS data
- Past plans of dam, site, or nearby construction
- Topographic mapping & LIDAR
- Sanborn Fire Insurance mapping
- Utility information (town, state, cal-before-you-dig)
- Web pages for local boating
- Permit applications

- Old reports (environmental, historic, engineering, planning, state studies, etc.)
- Photographs and Drawings
- Historic records & maps
- Federal Energy Regulatory Commission reports
- State rare & endangered species mapping
- Tax assessors mapping
- Wetland mapping
- Fisheries data
- Stream data
- Watershed, aquifer, env. hazard mapping
- Flood Reports
- Pre-Dam Photographs, Drawings, or Surveys
- Reservoir Drawdown Photographs
- Barrier Inventories

WHAT ACTIONS CAN BE TAKEN

Prioritize limited ecological restoration resources and funding by:

- 1. Identify critical issues/potential barriers with stakeholder input early on
- 2. Determine if they really are "barriers" or if creative solutions can be found
- 3. Design project with regional regulatory requirements in mind
- 4. Adopt an adaptive management approach incorporating monitoring if possible

CHAPTER 7 DAM REMOVAL

From Sea to Source

Protection and restoration of fish migration in rivers worldwide

> The Kirl in Ingli Danes Carpon Dan pana Aroun as Lipper Elena Danji skrite remenek O LG Assisted Part Service.

Free download at https://www.fromseatosource.com/

Thank You!

Now you're ready to go out and find the best opportunities for a successful restoration project!

> Laura Wildman, PE Ecological Restoration Engineer S. Glastonbury, Connecticut, USA 860-652-8911 Iwildman@princetonhydro.com

