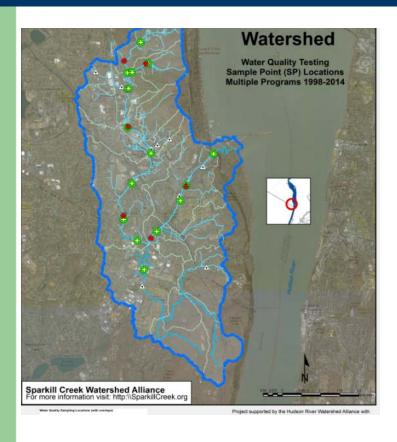
Illicit Discharge Detection and Elimination: Outfall Reconnaissance Inventory



Presentation Overview

- Using Existing Data
- Review of ORI
- Customization and caveats of ORI
- Post-processing
- Collecting samples

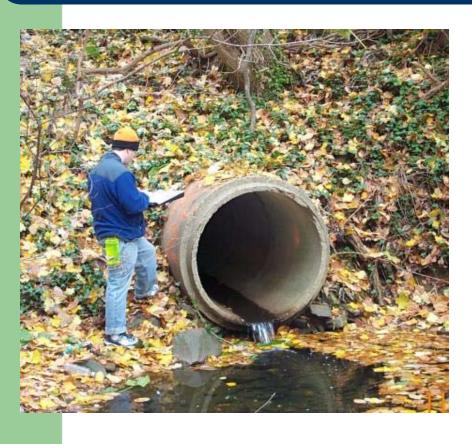
Quick "Desktop Assessment"

Existing Water
 Quality Monitoring is
 a Great Start

Some Screening Factors for Illicit Discharge Potential (IDP)

- Past Discharge Complaints
- Poor Dry Weather Water Quality
- Aging Sewers
- Any others?

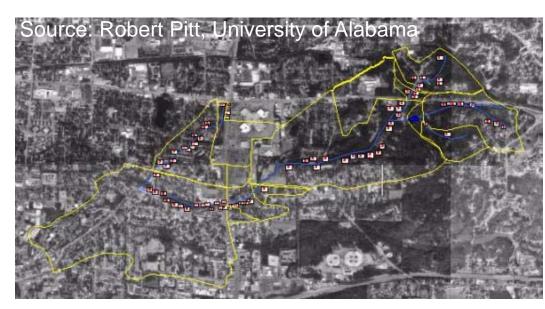
Select the factors that apply most to your community



Initial Desktop Screening Helps to:

- Identify best areas to focus on for Outfall investigations.
- Determine if IDDE should be a primary focus in a particular watershed.
- Develop field maps:
 - Outfalls
 - Storm Drain System (if available)
 - Land use/land cover
 - Other?

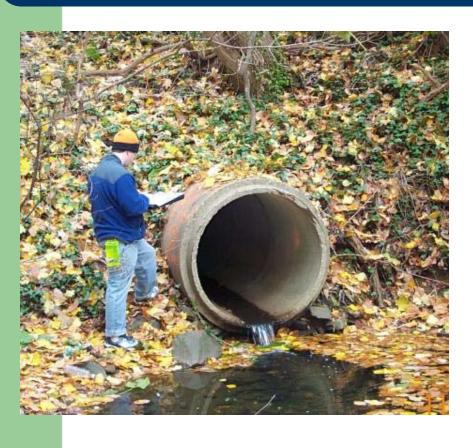
Field Assessments The Basics



- Time of year considerations
- Supplies
- Staffing requirements
- Safety considerations

Outfall Reconnaissance Inventory (ORI) Map, Mark & Photograph Outfalls

- Assign unique ID to each outfall
- Physically mark each outfall
- Use a GPS unit to record outfall locations
- Take a photograph



ection 1: Background Data			
Today's date:	Time (Military):	Subwatershed:	Outfall ID:
Investigators:	Form completed by:	Temperature (°F):	
Camera:	Photo #s:	Rainfall (in.): Last 24 hours:	Last 48 hours:
Latitude:	Longitude:	GPS Unit:	GPS LMK #:
Land Use in Drainage Area (Check all t	hat apply):		
☐ Industrial ☐ Ultra-Urban Resi	idential Commercial Open	Space Suburban Residential	■ Institutional
Other:	Known In	idustries:	

Outfall Reconnaissance Inventory (ORI) Record Basic Characteristics

- Dimensions
- Material
- Whether or not outfall is flowing

Section 2: Outfall D	escription					
LOCATION	M	ATERIAL	5	HAPE	DIMENSIONS	(IN.) SUBMERGED
	RCP	☐ CMP	Circular	Single	Diameter, circular:	In Water:
Closed Pipe	PVC	■ HDPE	Elliptical	Double	Box: h w -	□ No □ Partially* □ Fully*
	Steel		Box	Triple	Elliptical:	With Sediment:
☐ Manhole	Other:		Other:	Other:	hw-	□ No □ Partially □ Fully
	Concrete	🔲 rip-rap 🔲 Earthen	☐ Trapezoid	Other:	Depth:	Bottom Width:
Open drainage	Other:		Parabolic		Top Width:	
☐ In-Stream	Complete Stres	m Discharge form				
Flow Present?	Yes	□ No If No.	Skip to Section 5	Flow Description	Trickle	Moderate 🔲 Substantial
action 3: Quantitati	iva Character	ization				

ection 3: Quantitative Characterization

Outfall Reconnaissance Inventory (ORI)
Simple Monitoring at Flowing Outfalls

Flow

pH

Temperature

Ammonia

Section 3: Quantitative Characterization

Section 3: Quantitative Characterization FIELD DATA FOR FLOWING OUTFALLS							
P	ARAMETER	RESULT	UNIT	EQUIPMENT			
41	Volume		Liter	Bottle			
Flow#1	Time to fill		Sec	Stopwatch			
	Flow width	3 33	Ft, In	Tape measure			
Flow #2	Flow depth	123	In	Tape measure			
	Time of travel (thalweg)	1. 2. 3.	Sec	Stop watch			
	Measured length	3 23	Ft, In	Tape measure			
Flow #3	Flow depth		In	Tape measure			
(only for free- flowing outfalls)	Wetted width		£	Tape measure			
	Ammonia		mg/L	Colorimeter			
	Temperature		°F				
	pН						
Potassium			Ppm	Ion probe			
	Detergents		Ppm	Chemets kits			
	Fluoride		Mg/L	Photometer			
(Conductivity		μS	Conductivity probe			

Outfall Reconnaissance Inventory (ORI) Physical Indicators for Flowing Outfalls

- Odor
- Color
- Turbidity
- Floatables

Section 4: Physical Indicators for Flowing Outfalls Only Are Any Physical Indicators Present in the flow? Yes No (If No, Skip to Section 5)							
INDICATOR	CHECK if Present	DESCRIPTION	REL	ATIVE SEVERITY INDEX	(1-3)		
Odor		Sewage Rancid/sour Petroleum/gas Sulfide Other:	1 - Faint	2 – Easily detected	3 – Noticeable from a distance		
Color		□ Clear □ Brown □ Gray □ Yellow □ Green □ Orange □ Red □ Other:	☐ 1 – Faint colors in sample bottle	2 – Clearly visible in sample bottle	3 – Clearly visible in outfall flow		
Turbidity		See severity	☐ 1 — Slight cloudiness	2 – Cloudy	3 – Opaque		
Floatables -Does Not Include Trash!!		Sewage (Toilet Paper, etc.) Suds Petroleum (oil sheen) Other:	☐ 1 – Few/slight; origin not obvious	2 – Some; indications of origin (e.g., possible suds or oil	3 - Some; origin clear (e.g., obvious oil sheen, suds, or floating		

Outfall Reconnaissance Inventory (ORI) What to do when obvious illicit discharge encountered?

- STOP the ORI
- Track the source
- Contact appropriate water pollution agency
- Photo document, estimate flow, and collect a sample – if safe

Photo Source: R. Frymire

Outfall Reconnaissance Inventory (ORI)
Physical Indicators for Flowing and Non-Flowing
Outfalls

- Outfall Damage
- Deposits/Stains
- Abnormal Vegetation
- Poor Pool Quality
- Pipe Benthic Growth

Section 5. Physical Let	liantary for Bath Floring	and New Floring October	
	licators for Both Flowing that are not related to flow j	and Non-Flowing Outfalls present? Yes No (If No, Skip to Section 6)	
		and Non-Flowing Outfalls present? Pres Do (If No, Skip to Section 6) DESCRIPTION	COMMENTS
Are physical indicators t	that are not related to flow p	present? Yes No (If No, Skip to Section 6)	COMMENTS
Are physical indicators t INDICATOR	that are not related to flow the CHECK if Present	present? Yes No (If No, Skip to Section 6) DESCRIPTION	COMMENTS
Are physical indicators t INDICATOR Outfall Damage	that are not related to flow the CHECK if Present	DESCRIPTION Spalling, Cracking or Chipping Peeling Paint Corrosion	COMMENTS
Are physical indicators t INDICATOR Outfall Damage Deposits/Stains	CHECK if Present	DESCRIPTION Spalling, Cracking or Chipping Peeling Paint Corrosion Oily Flow Line Paint Other:	COMMENTS
Are physical indicators t INDICATOR Outfall Damage Deposits/Stains Abnormal Vegetation	CHECK if Present	DESCRIPTION Spalling, Cracking or Chipping Peeling Paint Corrosion Oily Flow Line Paint Other: Excessive Inhibited	COMMENTS

Outfall Reconnaissance Inventory (ORI) Section 6-8

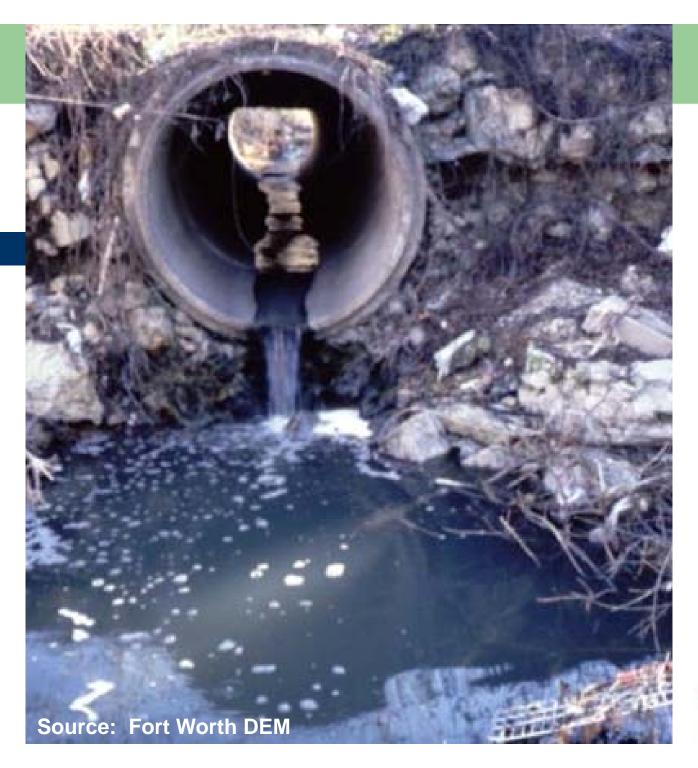
÷.	Section 6: Overa	all Outfall C	haracteriza	tion									
	Unlikely	Poten	tial (presenc	e of two or mo	ore indicators)	Sus	spect (one o	r more indi	icators with a sever	ity of 3)	Obviou	us	
5	Section 7: Data	Collection											1
1	 External lab s Sterile sample 			ıl, whirlpack)?	Yes Yes	No No	2. Intern	al lab sampl	e (~50 ml, whirlpack)	?	Yes	■ No	
4	l. Sample(s) col	lected from:	Flow	Pool	Duplicate of	ollected?	Yes Yes	☐ No	If yes, check approp	oriate:	External lab	Internal lab	Sterile

Section 8: Any Non-Illicit Discharge Concerns (e.g., trash or needed infrastructure repairs) or other Notes?

- Illicit Discharge Severity?
- Sample taken at outfall?
- Note unusual conditions near the outfall

Quick and Dirty ORI Exercise

(Pardon the pun!)



Customizing the ORI

- Open channels
- Submerged or tidally influenced outfalls
- Cold climate/ ice
- Other local indicators (e.g., biological)

The ORI Cannot:

- Find all discharges (can sometimes lead to a "false positive" as well)
- Detect intermittent flows that leave no trace
- Quantify impacts definitively (no direct measure of relative problem)
- Define sources (except for some obvious indicators)

Post-Screening Prioritization

ORI, combined with other existing data, can help determine:

- Extent of the problem
- If problems are "clustered"
- Indicators of intermittent discharges
- Relative ranking of problem outfalls

Subwatershed and Survey Reach Screening: Metrics to Consider

- Fraction flowing (from ORI)
- Number with physical indicators, and severity
- Indicators at dry outfalls
- Other existing monitoring data
- In-stream goals
- History of complaints

Characterizing the IDDE Problem at the Watershed Level:

Using Stream and ORI Data to Categorize IDDE Problems							
Extent	ent ORI Support Data						
Minimal	 Less than 10% of total outfalls are flowing Less than 20% of total outfalls with obvious, suspect or potential designation 						
Clustered	 Two thirds of the flowing outfalls are located within one third of the subwatersheds More than 20% of the communities subwatersheds have greater than 20% of outfalls with obvious, suspect or potential designation 						
Severe	 More than 10% of total outfalls are flowing More than 50% of total outfalls with obvious, suspect or potential designation More than 20% of total outfalls with obvious or suspect designation 						

Summary

